Friday, February 22, 2019

Your Learning Goal: After students learn the meaning of vectors and velocities, they will solve velocity problems with 100% accuracy.

<u>Table of Contents</u>: Velocity & Vectors- 35L + R

<u>Catalyst (35L)</u>: Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Homework:

Velocity & Vectors HW

Agenda:

- 1. Catalyst
- 2. Velocity/Vectors
- 3. Racing Vector Game

Table of Contents

<u> </u>		
_Date	Assignment	Pg #
1/22/19	A Planet is Born	27L + R
1/24/19	Scaling the Planets	28L + R
1/29/19	Spatial Attraction	29 L+ R
1/31/19	Electricity and Magnetism	30 L + R
2/6/19	How Fast Is Fast?	31 L + R
2/12/19	Speed Graphs	32L + R
2/14/19	Speed It Up Trackstar	33 L + R
2/19/19	Runner's Speed	34L + R
2/22/19	Velocity & Vectors	35 L + R
		26P

2/22/19

Velocity & Vectors

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

35L

35**R**

Speed

Solved using the equation:

speed = distance/time

Velocity

*Velocity is the speed of an object <u>and</u> the direction that the object is traveling.

*Speed = 1.5 m/s

*Velocity = 1.5 m/s north

How do we change velocity?

There are 3 ways to change velocity. Turn to your elbow partner. What do you think the 3 ways are?

Hint: Think about what makes up velocity!

Velocity changes when...

- * Speed changes (Speeds up or slows down)
- * Direction changes
- * Both speed and direction change

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity & Vectors

Velocity changes when:

- 1. Speed Changes
- 2. Direction Changes
- 3. Both (speed & direction change)

Velocity: Velocity is the speed of an object AND the direction that the object is traveling.

A vector is...

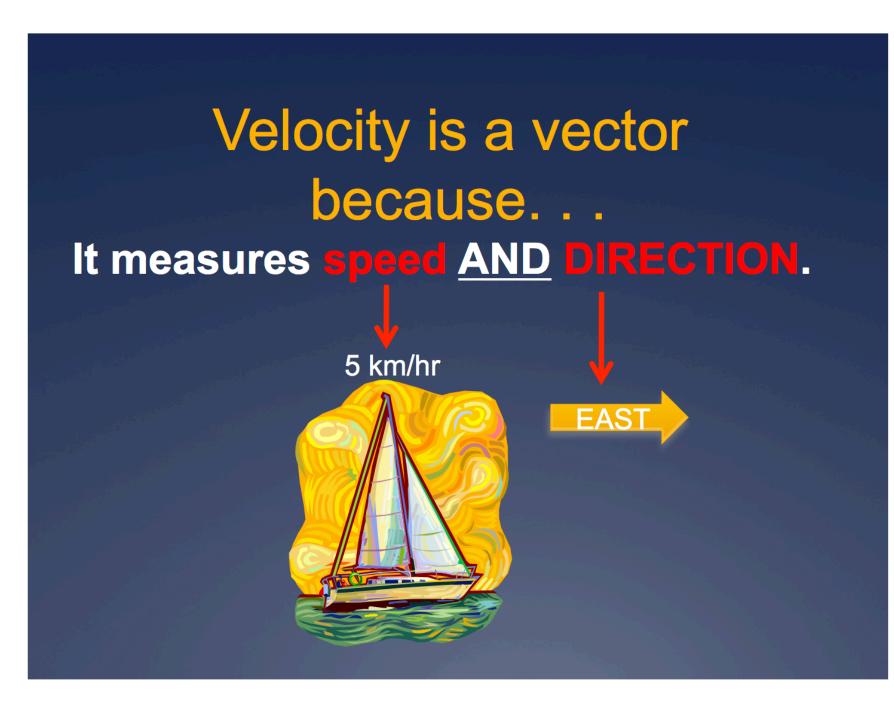
- *A measurement that has direction.
- * Vectors are represented by an arrow!

Now turn to your elbow partner. Which is a <u>vector</u> – <u>velocity</u> or <u>speed??</u>

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity & Vectors

Velocity changes when:


- 1. Speed Changes
- 2. Direction Changes
- 3. Both (speed & direction change)

Velocity: Velocity is the speed of an object AND the direction that the object is traveling.

<u>Vector:</u> A measurement that has direction & magnitude. Vectors are represented by an arrow!

35L

35**R**

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

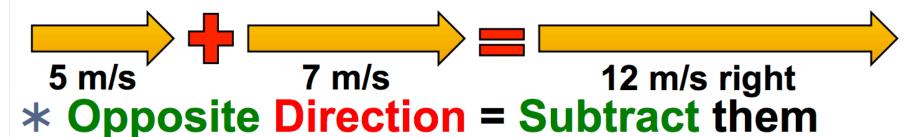
Velocity & Vectors

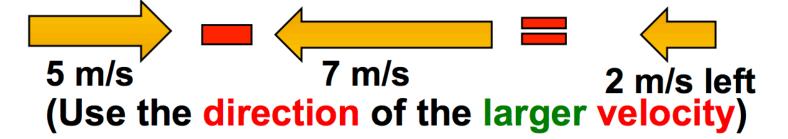
Velocity changes when:

- 1. Speed Changes
- 2. Direction Changes
- 3. Both (speed & direction change)

<u>Velocity:</u> Velocity is the speed of an object AND the direction that the object is traveling.

Vector: A measurement that has direction. Vectors are represented by an arrow!
Velocity is a vector. It has BOTH


a speed AND a direction


35L

35**R**

You Can Add or Subtract

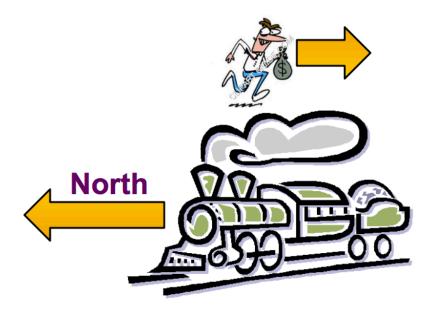
- * Depending on the direction they are going, vectors can add together or cancel each other out (on the same object).
- * Same Direction = Add together

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity & Vectors Velocity changes when:

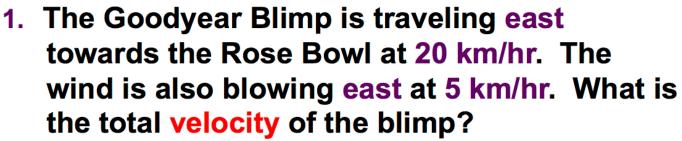
- 1. Speed Changes
- 2. Direction Changes
- 3. Both (speed & direction change)

Velocity: Velocity is the speed of an object AND the direction that the object is traveling.

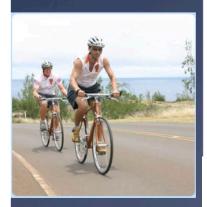

Vector: A measurement that has direction. Vectors are represented by an arrow!

Velocity is a vector. It has BOTH a speed AND a direction Vectors may add together or cancel out (on the same object).

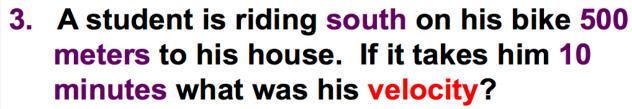
- Same Direction = Add
- Opposite Direction = Subtract (Use the direction of the larger velocity)


Example

A train robber is running on top of a train south at 5 m/s. The train is going north at 10 m/s. What is the train robber's velocity?


A Little Practice!

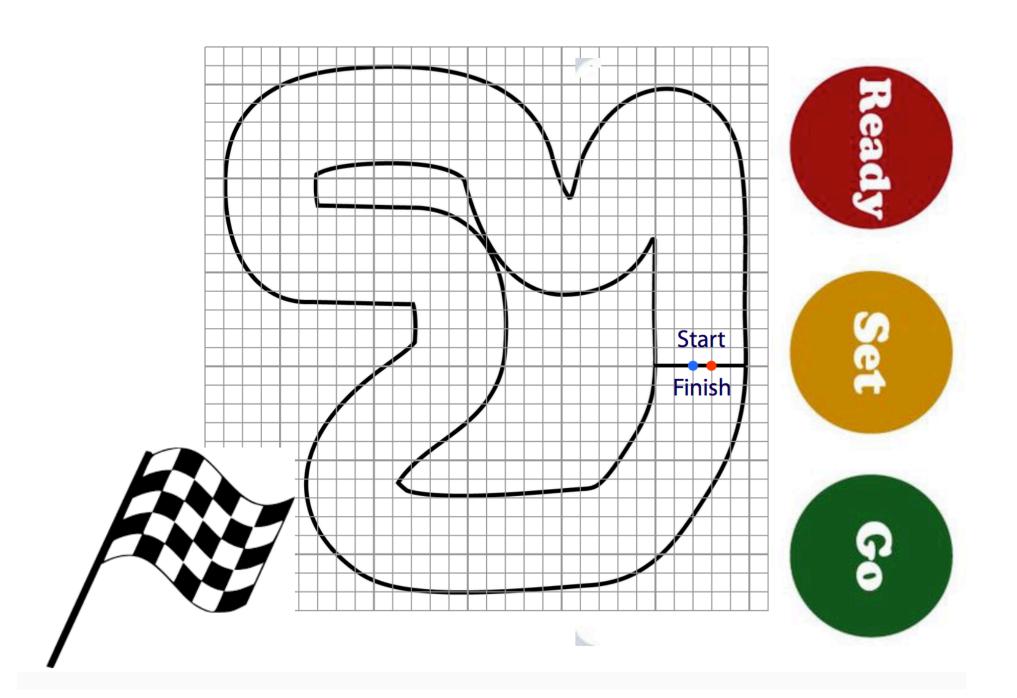
2. A group on a raft is trying to paddle back up the river. If the people are paddling upstream at 7 km/hr and the river is flowing downstream at 5 km/hr what is the velocity of the raft?



3. A student is riding south on his bike 500 meters to his house. If it takes him 10 minutes what was his velocity?

35 L

Just a couple of more practice problems...



- 4. A family is going to the market and without slowing down, turns into the parking lot of the market. Did the <u>velocity</u> of the car and family change? Explain why or why not.
- 5. The MTA bus is traveling north on Vermont towards USC and stops at red light. Does the <u>velocity</u> of the bus change when it is stopping? Explain why or why not.

35 L

Let's Play a Vector Game!

- * You will be playing in table groups
- * Each person will take a turn rolling the dice telling you how many spaces to proceed. You decide on the direction.
- * Draw your vector on the game board (distance + direction)
- You can team up OR gang up on another player by using your turn to add or subtract vectors.
- The person to first travel around the track WINS!

