Friday, February 22, 2019

Your Learning Goal: After students learn the meaning of vectors and velocities, they will solve velocity problems with 100% accuracy.
Table of Contents:
Velocity \& Vectors- 35L + R

- Catalyst (35L): Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Table of Contents

Date	Assignment	$\mathrm{Pg} \#$
$1 / 22 / 19$	A Planet is Born	$27 L+R$
$1 / 24 / 19$	Scaling the Planets	$28 L+R$
$1 / 29 / 19$	Spatial Attraction	$29 L+R$
$1 / 31 / 19$	Electricity and Magnetism	$30 L+R$
$2 / 6 / 19$	How Fast Is Fast?	$31 L+R$
$2 / 12 / 19$	Speed Graphs	$32 L+R$
$2 / 14 / 19$	Speed It Up Trackstar	$33 L+R$
$2 / 19 / 19$	Runner's Speed	$34 L+R$
$2 / 22 / 19$	Velocity \& Vectors	$35 L+R$

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity \& Vectors

Speed

Solved using the equation:

= distance/time

Velocity

*Velocity is the speed of an object and the direction that the object is traveling.

$$
=1.5 \mathrm{~m} / \mathrm{s}
$$

$=1.5 \mathrm{~m} / \mathrm{s}$ north

32

How do we change velocity?

There are 3 ways to change . Turn to your elbow
 partner. What do you think the 3 ways are?

Hint: Think about what makes up
!

Velocity changes when. . .

* Speed changes (Speeds up or slows down)
* Direction changes
* Both speed and direction change

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity \& Vectors

Velocity changes when:

1. Speed Changes
2. Direction Changes
3. Both (speed \& direction change)
Velocity: Velocity is the speed of an object AND the direction that the object is traveling.

A vector is. . .

* A measurement that has are represented by an arrow!

Now turn to your elbow partner. Which is a vector -
or
??

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity \& Vectors

Velocity changes when:

1. Speed Changes
2. Direction Changes
3. Both (speed \& direction change)
Velocity: Velocity is the speed of an object AND the direction that the object is traveling.
Vector: A measurement that has direction \& magnitude. Vectors are represented by an arrow!

Velocity is a vector because. . .

It measures AND
$5 \mathrm{~km} / \mathrm{hr}$

2/21/19

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity \& Vectors

Velocity changes when:

1. Speed Changes
2. Direction Changes
3. Both (speed \& direction change)
Velocity: Velocity is the speed of an object AND the direction that the object is traveling.
Vector: A measurement that has direction. Vectors are represented by an arrow!
Velocity is a vector. It has BOTH a speed AND a direction

You Can Add or Subtract

* Depending on the direction they are going, vectors can add together or cancel each other out (on the same object).
* Same Direction = Add together

$5 \mathrm{~m} / \mathrm{s} \quad 7 \mathrm{~m} / \mathrm{s} \quad 12 \mathrm{~m} / \mathrm{s}$ right
* Opposite Direction = Subtract them

(Use the direction of the larger velocity)
35 R

2/21/19

Catalyst:

Compare and contrast speed and velocity by doing a "Double Bubble" map or Venn Diagram.

Velocity \& Vectors

Velocity changes when:

1. Speed Changes
2. Direction Changes
3. Both (speed \& direction change)
Velocity: Velocity is the speed of an object AND the direction that the object is traveling.
Vector: A measurement that has direction. Vectors are represented by an arrow!
Velocity is a vector. It has BOTH a speed AND a direction
Vectors may add together or cancel out (on the same object).

- Same Direction = Add
- Opposite Direction = Subtract (Use the direction of the larger velocity)

Example

A train robber is running on top of a train south at $5 \mathrm{~m} / \mathrm{s}$. The train is going north at $10 \mathrm{~m} / \mathrm{s}$. What is the train robber's velocity?

A Little Practice!

1. The Goodyear Blimp is traveling east towards the Rose Bowl at 20 km/hr. The wind is also blowing east at $5 \mathrm{~km} / \mathrm{hr}$. What is the total velocity of the blimp?
2. A group on a raft is trying to paddle back up the river. If the people are paddling upstream at $7 \mathrm{~km} / \mathrm{hr}$ and the river is flowing downstream at $5 \mathrm{~km} / \mathrm{hr}$ what is the velocity of the raft?

3. A student is riding south on his bike $\mathbf{5 0 0}$ meters to his house. If it takes him 10 minutes what was his velocity?

35 L

Just a couple of more practice problems...

3. A student is riding south on his bike 500 meters to his house. If it takes him 10 minutes what was his velocity?
4. A family is going to the market and without slowing down, turns into the parking lot of the market. Did the velocity of the car and family change? Explain why or why not.
5. The MTA bus is traveling north on Vermont towards USC and stops at red light. Does the velocity of the bus change when it is
35 L stopping? Explain why or why not.

Let’s Play a Vector Game!

* You will be playing in table groups
* Each person will take a turn rolling the dice telling you how many spaces to proceed. You decide on the direction.
* Draw your vector on the game board (distance + direction)

You can team up OR gang up on another player by using your turn to add or subtract vectors.

The person to first travel around the track WINS!

