Thursday, October 11, 2018

Your Learning Goal:

Students will be able to understand atomic structure and the

key characteristics of atomic components

Table of Contents: Going Subatomic – 11 R

<u>Catalyst</u>: (11 L) What does everything in the universe have in common?

٨	Table of Contents								
	Date	Assignment	Pa #						
	10/8/18 10/8/18 10/11/18	Our Expanding Universe The Universe: Beyond the Big Bang Going Subatomic	9 L+ R 10 L + R 11L + R						
ſ									

<u>Catalyst</u> What does everything in the universe have in common?

Going Subatomic

11

10/11/18

Matter

- Anything that has mass and takes up space (volume)
 - Examples:
 - A brick has <u>mass</u> and <u>takes up space</u>
 - A desk has <u>mass</u> and <u>takes up space</u>
 - A pencil has <u>mass</u> and <u>takes up space</u>
 - Air has mass and takes up space

All of the above examples are considered matter because they have <u>mass</u> and <u>take up space</u>. Can you think of anything that would not be considered matter?

How small is an Atom?

Cut your strip of paper IN HALF as many times as you can

No cuts	28 cm	11 in	Piece of paper
1 cut	14 cm	5.5 in	Hand, grapefruit
2 cuts	7.0 cm	2.75 in	Finger length, Apple
3 cuts	3.5 cm	1.38 in	Mushroom, paper clip
4 cuts	1.75 cm	.69 in	Dimes, keyboard keys, rings, insects
5 cuts	0.88 cm	.35 in	Peas
6 cuts	.44 cm	.17 in	Sunflower seeds
7 cuts	.22 cm	.09 in	Ant's width
8 cuts	1.0 mm	.04 in	Thread, sharp pencil tip width
10 cuts	.25 mm	.01 in	If you can cut this small, you are superhuman!
12 cuts	.06 mm	.002 in	Microscopic range, human hair
14 cuts	.015 mm	.006 in	Width of paper, microchip components
18 cuts	1.0 micron	.0004 in	Water purification openings, bacteria
19 cuts	.5 micron	.000018 in	Visible light waves
24 cuts	.015 micron	.0000006 in	Electron microscope range, DNA, membranes
31 cuts	1×10^{-10} m (move the decimal 10x to the left)	4.5×10^{-9} in (move the decimal 9x to the left)	Size of an Atom!
41 cuts	A little more than 1×10^{-15} m	A little more than $4x10^{-14}$ in	The size of the nucleus of an atom (the largest nuclei would be this amount $x10$)
58 cuts	About $1 \times 10^{-18} \text{m}$	A little less than $4x10^{-18}$ in	Quarks! They may be even smaller than this.

Atoms are so small that...

- it would take a stack of about 50,000 aluminum atoms to equal the thickness of a sheet of aluminum foil from your kitchen.
- if you could enlarge a penny until it was as wide as the US, each of its atoms would be only about 3 cm in diameter - about the size of a ping-pong ball
- a human hair is about 1 million carbon atoms wide.
- a typical human cell contains roughly 1 trillion atoms.
- a speck of dust might contain 3x10¹² (3 trillion) atoms.
- it would take you around 500 years to count the number of atoms in a grain of salt.

Just one of these grains 🔘

Protons (+)

- Positively charged
- Make up the nucleus of the atom
- Equal to the atomic number of the atom
- Contribute to the atomic mass
- Equal to the number of electrons

- Neutral particles; have no electric charge
- Help make up the nucleus of the atom
- Contribute to the atomic mass

 Involved in the formation of chemical bonds

Hydrogen (H) Atom

Notice the one electron in the first orbital

Oxygen (O) Atom

 Notice the two electrons in the first orbital/level and the six in the second

Sodium (Na) Atom

 Notice the two electrons in the first orbital/level, eight in the second, and one in the third

QUARKS

• Particles that make up protons and neutrons

• The number of protons in the nucleus of an atom

What would be the atomic number of this atom?

- The total number of protons and neutrons in an atom's nucleus
- Expressed in <u>A</u>tomic <u>Mass U</u>nits (amu)
 - Each proton or neutron has a mass of 1 amu

Atoms	Protons	Neutrons	Electrons
Carbon	6	6	6
Beryllium	4	5	4
Oxygen	8	8	8
Lithium	3	4	3
Sodium	11	12	11

Lead: An atom's structure is like a _____ because

Evidence: Make connections between the parts of an atom and the parts of your analogy (A proton is like a _____. An electron is like a _____. The nucleus is like the _____.)

Analysis/Warrant: Explain the similarities between the subatomic particles and your analogy. (The proton is like the BECAUSE...)

Finisher: Restating your claim in a new way to provide closure for your argument. (How is the atom like your analogy?)

<u>Catalyst</u>

What does everything in the universe have in common?

Create an analogy paragraph comparing the structure of an atom to something else. (or a different analogy of your choice)

<u>Going Subatomic</u>

10/11/18