
Wednesday, March 20, 2019

- Your Learning Goal: Students will be able to observe centripetal motion with the water bucket demo and creation of a water vortex. They will be able to explain most circular orbiting objects. Spinning in circles- 41L + R
- Catalyst 41L: Think about a time you rode a roller coaster / watched one. What keeps the passengers in their seats when in a loop? What forces are at work here? Explain.

Table of Contents		
Date	Assignment	Pg #
2/19/19	Runner's Speed	34L + R
2/22/19	Velocity & Vectors	35 L + R
3/1/19	Forces Everywhere!	36 L +R
3/5/19	How high can I jump?	37 L + R
3/7/19	Rules of (Gravitational) Attraction	38 L + R
3/11/19	You Look Tense	39 L + R
3/13/19	Feel the tension	40 L + R
3/20/19	Spinning in Circles	41 L + R

R

Catalyst:

Think about a time you rode a roller coaster / watched one.

What keeps the passengers in their seats when in a loop? What forces are at work here? Explain. 3/20/19 Spinning in Circles

Catalyst 41 L

https://www.youtube.com/watch?v=5VI4s6GADgI&frags=pl%2Cwn https://www.youtube.com/watch?v=zHpAifN_2Sw&frags=pl%2Cwn

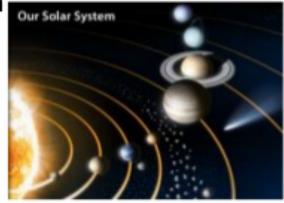
Think about a time you rode a roller coaster / watched one. What keeps the passengers in their seats when in a loop? What forces are at work here? Explain.

Let's take a trip... to the courtyard

https://www.youtube.com/watch?v=Zjqrx7wrpJc

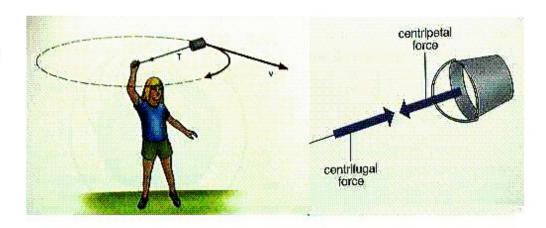
Shake it up!

https://www.youtube.com/watch?v=TkYJHp9KOxk&frags=pl%2Cwn

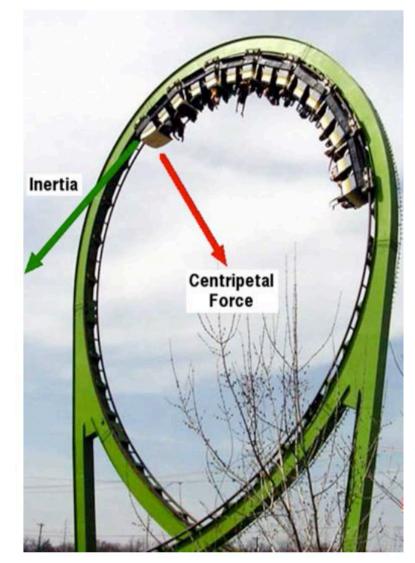


Centripetal forces Examples

- 1. Friction, as in the turning car example
- Tension, as in a rock whirling around while attached to a string, or the tension in the chains on a swing at the park.
- <u>Gravity</u>: The force of gravity between the Earth and sun keeps the Earth moving in a nearly circular orbit.

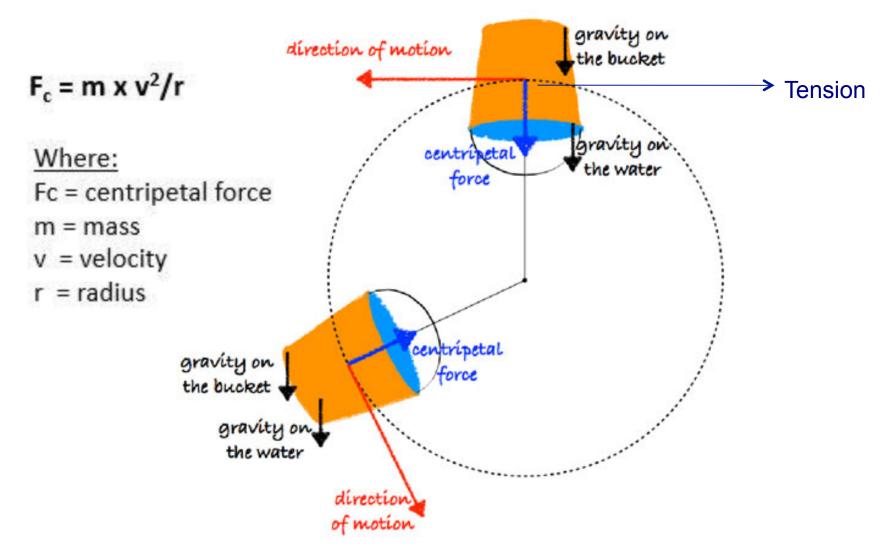


Spinning stuff- Centripetal Force


- Spinning a bucket of water over your head without spilling a drop, you are also applying a centripetal force. If you let go of the bucket, it will move in a straight line
- Centripetal force is always directed at the centre of an object.

Centripetal Force

- Any force that keeps an object moving in a circle
- This force points toward the center of the circle
- Without this force object would go flying off in a straight line
- Centripetal force keeps the planets in orbit



Centripetal Force

- Greater acceleration = greater centripetal force
- More mass requires more centripetal force to have the same circular speed as a less massive object.
- No matter the mass of an object, if it moves in a circle, its force and acceleration are directed to the center of the circle

Draw a simplified diagram on 41R

Catalyst:

Think about a time you rode a roller coaster / watched one. What keeps the passengers in their seats when in a loop? What forces are at work here? Explain.

REFLECTION:

Explain why the passengers don't fall out of their seats on a roller coaster ride or the bucket of water didn't spill on Ms. Salzburg. You must use the term centripetal force and its definition in your response. 3/19/19 Spinning In Circles

