
Wednesday, February 13, 2019 <u>Your Learning Goal</u>: After students experienced speed in the zipline engineering challenge, they will be able to describe how different speeds look on a graph with 100% accuracy. <u>Table of Contents</u>:

Speed Graphs- 32L + R

<u>Catalyst (32L)</u>: Use <u>Speed = Distance/Time</u> to answer the following word problems

Table of Contents		
Date	Assignment	Po
1/22/19	A Planet is Born	27
1/24/19	Scaling the Planets	28
1/29/19	Spatial Attraction	29

1/24/19 1/29/19 1/31/19 2/6/19 2/13/19 A Planet is Born Scaling the Planets Spatial Attraction Electricity and Magnetism How Fast Is Fast? Speed Graphs Pg # 27L + R 28L + R 29 L+ R 30 L + R 31 L + R 32L + R

2/13/19

Catalyst: Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?

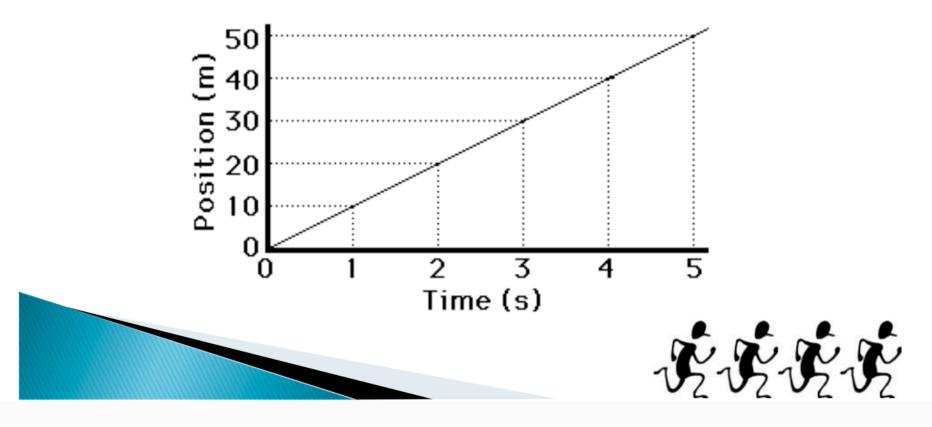
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

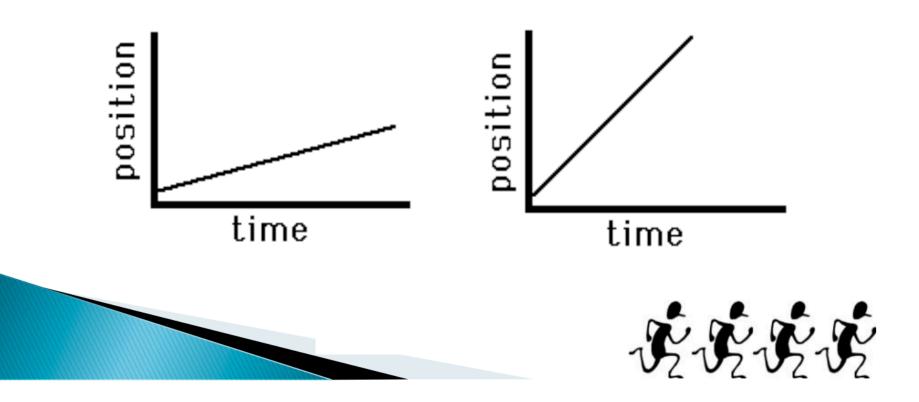
<u>Type of</u> <u>Graph</u>	<u>Picture</u>
Constant (same) speed	
Increasing speed	
Decreasing speed	
Stationary (No speed; Stopped)	
Moving back to the beginning	

GRAPHING MOTION

How to graph and interpret motion

Distance vs. Time Graph


- Speed = <u>change in distance</u> change in time
- To find speed from the graph, measure the <u>change</u> in distance and divide by the <u>change in time</u>
- This change is called the slope in math, SO SLOPE on a graph tells you the SPEED


Constant Speed Graph

- If the line is <u>straight</u> (no change in slope), that means the object is moving at <u>constant speed</u>.
- (Write the description and draw the image below)

Constant Speed Graph

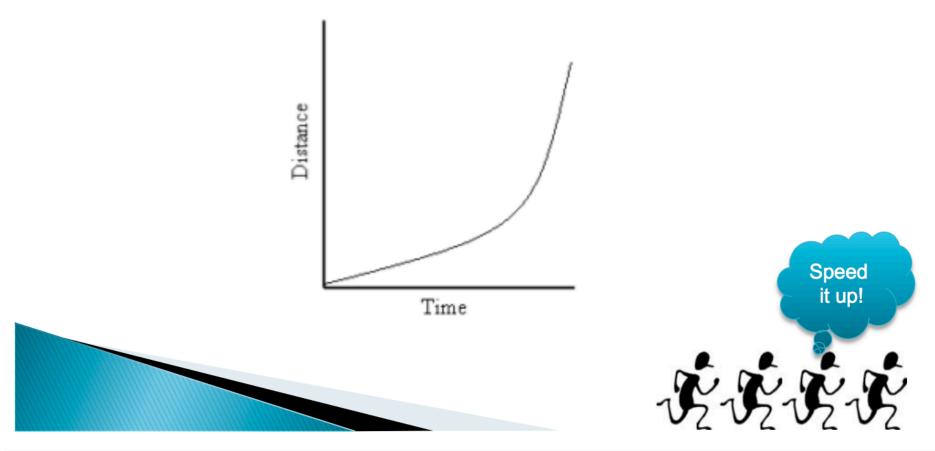
The steeper the line, the faster an object is going

32R

<u>Catalyst:</u> Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?

2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?


Picture <u>Type of</u> <u>Graph</u> If the line is straight Constant (same) (no change in slope), speed that means the object is moving at constant speed. Increasing speed **Decreasing speed** Stationary (No speed; Stopped) Moving back to the beginning

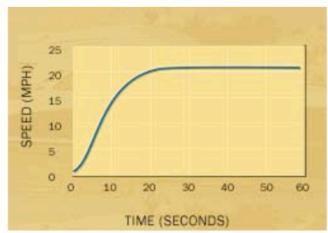
Speed Graphs

Increasing Speed Graph

- If the line on the graph is getting <u>steeper</u>, speed is increasing.
- (Write the description and draw the image below)

<u>Catalyst:</u> Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?


2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

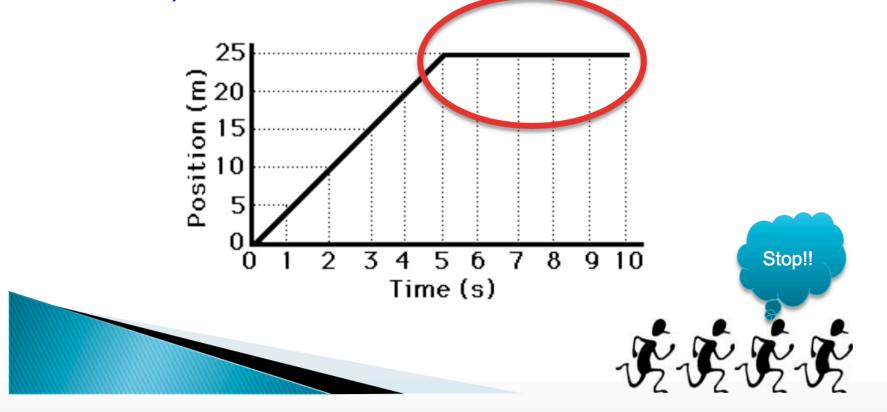
<u>Type of</u> <u>Graph</u>	<u>Picture</u>
Constant (same) speed	
Increasing speed	If the line on the graph is getting <u>steeper</u> , speed is increasing.
Decreasing speed	
Stationary (No speed; Stopped)	
Moving back to the beginning	

Decreasing Speed Graph

 If the line on the graph is getting <u>less steep</u>, the speed is decreasing. (Write the description and draw the image below)

<u>Catalyst:</u> Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?


2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

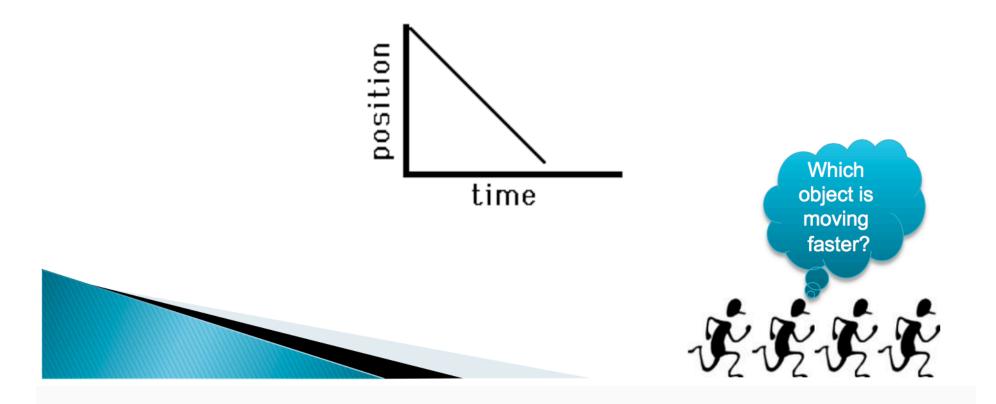
<u>Type of</u> <u>Graph</u>	<u>Picture</u>
Constant (same) speed	
Increasing speed	
Decreasing speed	If the line on the graph is getting <u>less steep</u> , the speed is decreasing.
Stationary (No speed; Stopped)	
Moving back to the beginning	

Stationary Speed Graph

 If the line goes <u>flat</u>, the object has stopped moving. (Write the description and draw the image below)

<u>Catalyst:</u> Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?


2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

<u>Speed Graphs</u>		
<u>Type of</u> <u>Graph</u>	<u>Picture</u>	
Constant (same) speed		
Increasing speed		
Decreasing speed		
Stationary (No speed; Stopped)	If the line goes <u>flat</u> , the object has stopped moving.	
Moving back to the beginning		
	32R	

Change in Direction

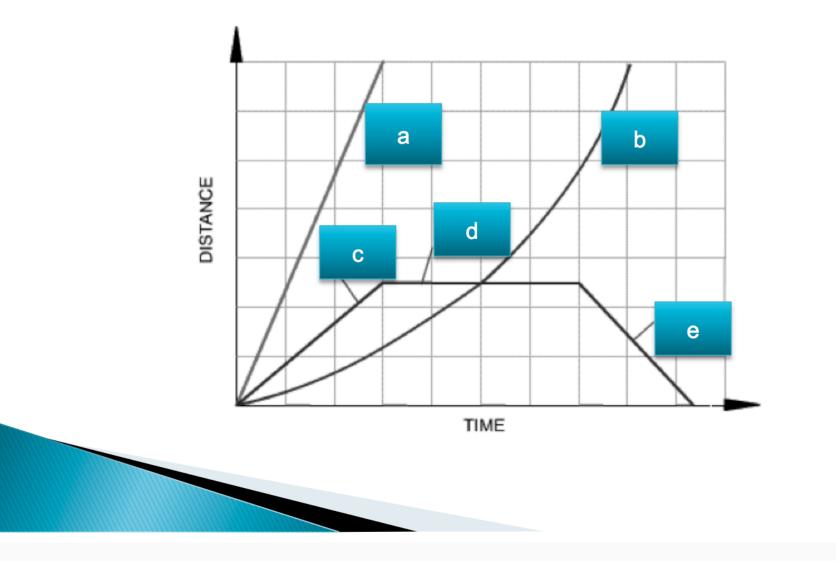
 When the graph has <u>negative slope</u>, the object is moving back towards the start. (Write the description and draw the image below)

<u>Catalyst:</u> Use <u>Speed = Distance/Time</u> to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?

2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs		
<u>Type of</u> <u>Graph</u>	<u>Picture</u>	
Constant (same) speed		
Increasing speed		
Decreasing speed		
Stationary (No speed; Stopped)		
Moving back to the beginning	When the graph has negative slope, the object is moving back towards the start	
	32R	


mand Count

Please complete with notes & pictures

<u>Type of Graph</u>	<u>Picture</u>
Constant (same) speed	
Increasing speed	
Decreasing speed	
Stationary (No speed; Stopped)	
Moving back to the beginning	32 R

Describe the <u>motion</u> in each part of the graph with those at your table:

Reflection

- What does the <u>slope</u> of a Distance vs. Time Graph tell you? *Explain* how you know.
- Sketch a simple graph of the following situation: A student runs to class because she is late. She stops for a moment to talk to her P.E. teacher. She then walks the rest of the distance to her next class.
- Ms. Salzburg ran 3 miles, biked 2 miles, and swam 1 mile. It took her 1 hour to do each activity. Find the <u>average speed</u>.

graphing!