Wednesday, February 13, 2019

Your Learning Goal: After students experienced speed in the zipline engineering challenge, they will be able to describe how different speeds look on a graph with 100\% accuracy.
Table of Contents:
Speed Graphs- 32L + R
Catalyst (32L): Use Speed = Distance/Time to answer the following word problems

Homework:

Tortoise and the Hare

Agenda:

1. Catalyst
2. Notes
3. Tortoise and the Hare

Table of Contents

Date	Assignment	$\mathrm{Pg} \mathrm{\#}$
$1 / 22 / 19$	A Planet is Born	$27 \mathrm{~L}+\mathrm{R}$
$1 / 24 / 19$	Scaling the Planets	$28 \mathrm{~L}+\mathrm{R}$
$1 / 29 / 19$	Spatial Attraction	$29 \mathrm{~L}+\mathrm{R}$
$1 / 31 / 19$	Electricity and Magnetism	$30 \mathrm{~L}+\mathrm{R}$
$2 / 1 / 19$	How Fast Is Fast?	$31 \mathrm{~L}+\mathrm{R}$
$2 / 13 / 19$	Speed Graphs	$32 L+R$

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Graph	Picture
Constant (same) speed	
Increasing speed	
Decreasing speed	
Stationary (No speed; Stopped)	
Moving back to the beginning	

GRAPHING MOTION

How to graph and interpret motion

> given

Distance vs. Time Graph

- Speed = change in distance change in time
- To find speed from the graph, measure the change in distance and divide by the change in time
- This change is called the slope in math, SO SLOPE on a graph tells you the SPEED

Constant Speed Graph

- If the line is straight (no change in slope), that means the object is moving at constant speed.
- (Write the description and draw the image below)

Constant Speed Graph

- The steeper the line, the faster an object is going

$\operatorname{vin}^{2} \operatorname{vin}^{2} \underbrace{2}$

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Graph	Picture		
Constant (same) speed	If the line is straight (no change in slope), that means the obect is moving at constant speed.		
Increasing speed			
Decreasing speed			
Stationary (No speed; Stopped)			
Moving back to the beginning			

Increasing Speed Graph

- If the line on the graph is getting steeper, speed is increasing.
(Write the description and draw the image below)

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Graph	Picture
Constant (same) speed	
Increasing speed	If the line on the graph is getting steeper, speed is increasing.
Decreasing speed	
Stationary (No speed; Stopped)	
Moving back to the beginning	

Decreasing Speed Graph

- If the line on the graph is getting less steep, the speed is decreasing. (Write the description and draw the image below)

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Graph	Picture
Constant (same) speed	
Increasing speed	
Decreasing speed	If the line on the graph is getting less steep, the speed is decreasing.
Stationary (No speed; Stopped)	Moving back to the beginning

Stationary Speed Graph

- If the line goes flat, the object has stopped moving. (Write the description and draw the image below)

Stop!!

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Graph	Picture
Constant (same) speed	
Increasing speed	
Decreasing speed	
Stationary (No speed; Stopped)	If the line goes flat, the object has stopped moving.
Moving back to the beginning	

Change in Direction

- When the graph has negative slope, the object is moving back towards the start. (Write the description and draw the image below)

Catalyst:

Use Speed = Distance/Time to answer the following word problems:

1. Ms. Salzburg had to run west to get home. It took her 2 minutes to run 100 meters. What is her speed?
2. What is Ms. Salzburg's average speed if she then took a 1 minute break and ran another 100 meters in 1 minute?

Speed Graphs

Type of Craph	Picture
Constant (same) speed	
Increasing speed	
Decreasing speed	
Stationary	
(No speed;	
Stopped)	
Moving back to the beginning	When the graph has negative slope, the object is moving back towards the start

Please complete with notes \& pictures

Type of Graph

Picture

Constant (same) speed
Increasing speed
Decreasing speed

Stationary

(No speed; Stopped)
Moving back to the beginning

Describe the motion in each part of the graph with those at your table:

Reflection

1. What does the slope of a Distance vs. Time Graph tell you? Explain how you know.
2. Sketch a simple graph of the following situation: A student runs to class because she is late. She stops for a moment to talk to her P.E. teacher. She then walks the rest of the distance to her next class.
3. Ms. Salzburg ran 3 miles, biked 2 miles, and swam 1 mile. It took her 1 hour to do each activity. Find the average speed.

32 L

