Thursday, November 29, 2018

Your Learning Goal:

Students will explore the visible spectrum with spectroscopes and filters to understand the properties of light.

Table of Contents: Spectacular Spectra - 22L + R

Catalyst (22L):

Describe a time you saw a rainbow. How did it form?

Homework:

Final Exam Dec 13/14

Agenda:

- 1. Catalyst
- 2. Spectroscopes
- 3. Reflection

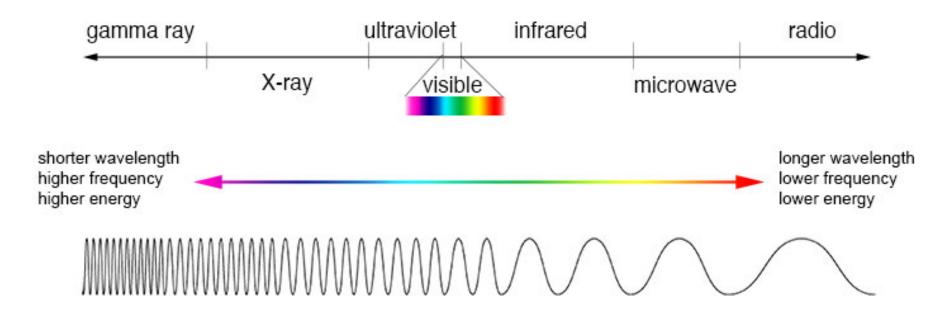
Table of Contents

<u> </u>			
_Date	Assignment	Pg #	
10/25/18	Atomic Jeopardy	16 L + R	
11/6/18	Star Bright	17 L + R	
11/8/18	Heartbeat Frequency	18 L + R	
11/13/18	Spring Into Waves	19 L + R	
11/26/18	EM Spectrum Hero	20L + R	
11/27/18	Reflections	21L + R	
11/29/18	Spectacular Spectra	22L + R	
		8R	

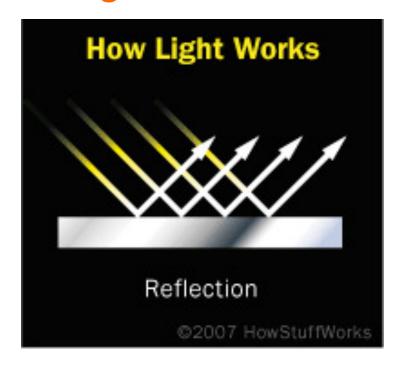
Describe a time you saw a rainbow. How did it form?

11/29/18

Spectacular Spectra


22L

Visible Light


And its properties:

reflection, refraction, absorption, transmission

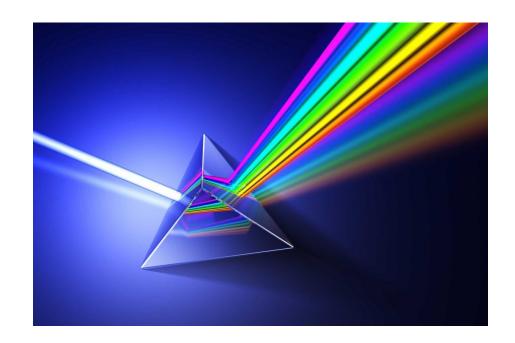
Reflection

Reflection: Light bouncing. Light hits a shiny surface and bounces off at a predictable angle.

Describe a time you saw a rainbow. How did it form?

11/29/18

Spectacular Spectra


Reflection: Light bouncing. Light hits a shiny surface and bounces off at a predictable angle.

22L

Refraction

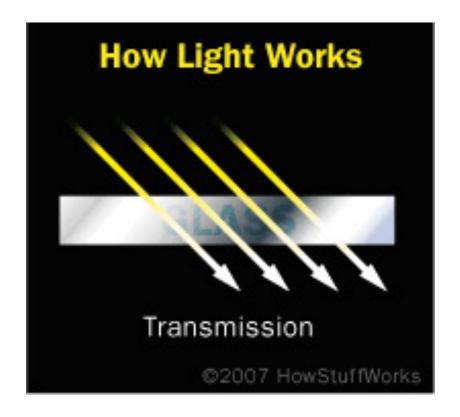
Refraction: Light bending.

When light travels through a medium it changes speed and bends.

Describe a time you saw a rainbow. How did it form?

11/29/18

Spectacular Spectra


Reflection: Light bouncing. Light hits a shiny surface and bounces off at a predictable angle.

Refraction: Light bending. When light travels through a medium it changes speed and bends.

22L

Transmission

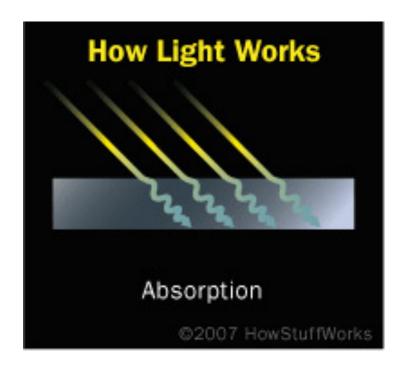
 Transmission: Light passes through a medium unchanged.

Describe a time you saw a rainbow. How did it form?

11/29/18

Spectacular Spectra

Reflection: Light bouncing. Light hits a shiny surface and bounces off at a predictable angle.


Refraction: Light bending. When light travels through a medium it changes speed and bends.

Transmission: Light passes through a medium unchanged.

22L

Absorption

Absorption: Light is trapped inside the medium.

Describe a time you saw a rainbow. How did it form?

11/29/18

Spectacular Spectra

Reflection: Light bouncing. Light hits a shiny surface and bounces off at a predictable angle.

Refraction: Light bending. When light travels through a medium it changes speed and bends.

Transmission: Light passes through a medium unchanged.

Absorption: Light is trapped inside the medium.

22R

22L

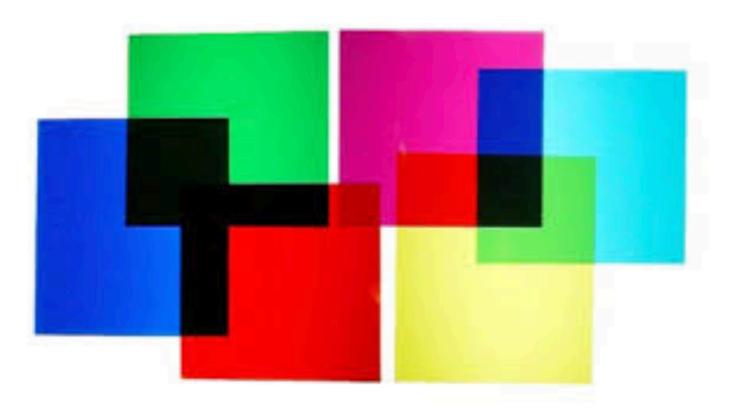
Complete the handout:

Spectra Diagrams

Observations

LED bulb

LED bulb with red filter



|||4||||;||||\$||||:||||6||||:||||7

Conclusions

What does a filter do? Describe evidence in your explanation.

Look around Using Green and Red Filters

What does the **red** filter do?

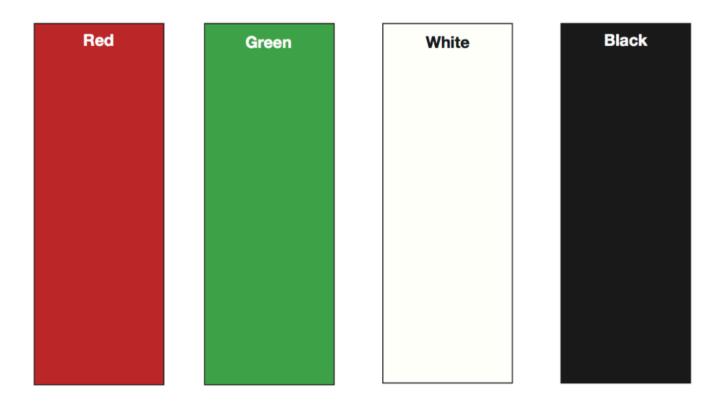
What does the *green* filter do?

Complete the handout:

Part A: Record observations (light or dark) in the data table.

	Red filter	Green filter
Red		
box		
Green		
box		
White		
box		
Black		
box		

Color Reflection Observations


Part B: Use the words *all*, *no*, *reflect(s)*, and *absorb(s)* to fill in the blanks below.

White objects reflect(s) _____ colors of light and absorb(s) _____ colors of light.

Black objects reflect(s) _____ colors of light and absorb(s) _____ colors of light.

An object of a particular color _____ light of that color and _____ other colors.

Look around Using Green and Red Filters

What does the **red** filter do?

What does the *green* filter do?

Light & The Eye

- Newton observed that color is not inherent in objects.
- The surface of an object reflects some colors and absorbs all others. We see only the reflected colors.
- "Red" is not IN the apple. The surface of the apple is reflecting the wavelengths we see as red and absorbing all the rest.
- An object is seen as white when it reflects all colors, black when it absorbs them all.

11/29/18

Spectacular Spectra

Catalyst:

Describe a time you saw a rainbow. How did it form?

Refection:

- •What can you conclude about visible light?
- •White light?
- •What does a filter do to color images?

22L