Tuesday, November 27, 2018

Your Learning Goal:

Students will use mathematical skills, measuring angles to create a laser maze investigating the properties of light when it interacts with matter.

Table of Contents: Reflections - 21L + R

Catalyst (21L):

How might you describe the difference between a mechanical wave (we learned about in the last class) and an electromagnetic wave?

Homework:

Final Exam Dec 13/14

Agenda:

- 1. Catalyst
- 2. Laser Maze!
- Reflection

Table of Contents

1 4 5 1 5 6 1 1 6 1 1 1 6		
_Date	Assignment	Pg #
10/25/18	Atomic Jeopardy	16 L + R
11/6/18	Star Bright	17 L + R
11/8/18	Heartbeat Frequency	18 L + R
11/13/18	Spring Into Waves	19 L + R
11/26/18	EM Spectrum Hero	20L + R
11/27/18	Reflections	21L + R
		8R

Catalyst:

How might you describe the difference between a mechanical wave (slinky transverse/compression waves) and an electromagnetic wave?

11/27/18

Reflections

Angle Of Incidence	Angle of Reflection		
30°			
45°			
60°			
You choose!			

21L

21R

 Draw a straight line where you want your mirror to be on the page

- 2. Measure 30 degrees with the protractor and draw a line.
- Label it your angle of incidence

- 1. Shine the laser down the angle of incidence line into the mirror
- 2. Trace over the reflected line that the laser creates
- 3. Measure the angle of reflection and record the number in your table 13L

Reflections

Angle of Reflection

11/27/18

30°

45°

60°

You choose!

Angle Of

Incidence

The relationship between angle of incidence and angle of reflection is...

Catalyst:

How might you describe the difference between a mechanical wave (slinky transverse/compression waves) and an electromagnetic wave?

21L

21R

Can you predict the path of your laser using only math?

Using 4 mirrors, predict the path of the laser by measuring the angle of incidence and reflection to land your laser on a chosen object.

What about 5 mirrors? Six? Seven?

By measuring the angles of incidence and reflection can you get a laser to bounce off two mirrors and hit a target?

11/27/18

Catalyst:

How might you describe the difference between a mechanical wave (slinky transverse/compression waves) and an electromagnetic wave?

LEAF:

Did your group predict the outcome of the laser maze accurately? Use mathematical evidence.

Reflections

Angle Of Incidence	Angle of Reflection	
30°		
45°		
60°		
You choose!		

The relationship between angle of incidence and angle of reflection is...

21L

21R