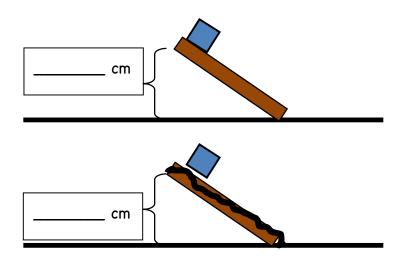
Discovering Forces

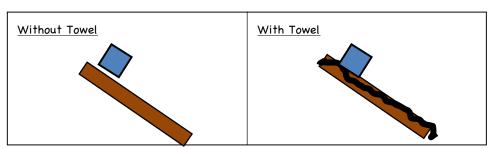

Name: Period: Date:

<u>Directions</u>: Figure out the forces at each station. Move to the next station when asked by your teacher. Don't forget to read each question! Also, use the key vocabulary words to fill in the blanks.

Sta	ition 1:				
	DO NOT TOUCH ANYTHING! Obser	ve the <u>masses</u> hang	jing from the	rubber band and the string.	
	Describe the forces acting on the masses by finishing the sentences below.				
	The two forces acting on the masse	es are: g down and tons.			
	•				
	have a force of News				
2.	Explain why you think both masses	have the same <u>forc</u>	e. Both masse	es have the same force beco	ause
3.	Draw a diagram (picture) of the				
	<u>masses</u> hanging from the rubber band and the string.				
	Draw the vectors (arrows) and				
	label the name and amount of				
	forces.	L			
4.	The forces in the diagram are		(balance	ed/unbalanced) because	
<u>Sta</u>	ation 2:				
1.	In the box on the right draw the				
	sponge and the textbook sitting seperately on the table. Draw				
	and label the forces using				
	vectors.	•	•	•	
2.	Put the textbook on the edge of]
	the sponge (about 1 cm) and draw				
	a side-view of the textbook on top of the sponge. <i>Draw</i> the				
	vectors (arrows) and label the				
	name of the forces.				
3.	The forces in the diagram are		(balance	ed/unbalanced) because	

Station 3:

- Put a textbook at one end of ramp. Slowly lift one side of the ramp until the book starts to slide and then STOP. Record the <u>distance</u> the ramp was lifted in centimeters (cm).
- Put the towel completely over the ramp so it covers the entire surface. Put the textbook on top of the towel/ramp. Slowly lift the ramp until the textbook begins to slide and then STOP. Record the <u>distance</u> the ramp was lifted in centimeters (cm).



- 3. a. When I added the towel, I had to lift the ramp _____ (higher/lower) to begin motion.
 - b. How did putting the towel on the ramp *change* the <u>physical characteristics</u> of the surface?

The towel made the surface ______ (rougher/smoother/stay the same),

therefore there was _____ (more/less) friction between the book and the surface.

c. <u>Draw</u> the <u>vectors</u> (arrows) and <u>label</u> the name of the forces.

- d. While the book is **sliding**, the **forces** are ______ (balanced/unbalanced) because _____.
- e. When the book **stops** on the table, the **forces** are ______ (balanced/unbalanced) because _____.

Station 4:

Find the **amount** of **force** used to **pull** the block for each of the surfaces. Make sure that the **spring** scale is at zero before you start and **pull** at constant speed!

Type of Surface		Force (N)		Average Force (N) trial 1 + trial2 + trial 3
	Trial 1	Trial 2	Trial 3	3
Table				
Wax paper				
Sand paper				

1.	The	has the <u>most friction</u> because it took	to pull the
	block and feels	(smooth/rough).	

2.	The	has the <u>least friction</u> because it took	to pull	the
	block and feels	(smooth/rough).		