

Adapted by T. Trimpe <u>http://sciencespot.net/</u>



#### RULES

1. You should NOT write your answers in the form of a question.

2. You DO need to keep track of your score. You do NOT lose points if you answer incorrectly.

#### RULES

3. Your team should answer EACH question on your whiteboard.

4. We will rotate who has control of the board, choosing the question.

| Motion     | Name that<br>Force | Units      | Newton's<br>Laws | Calculate this force |
|------------|--------------------|------------|------------------|----------------------|
| <u>100</u> | <u>100</u>         | <u>100</u> | <u>100</u>       | <u>100</u>           |
| <u>200</u> | <u>200</u>         | <u>200</u> | <u>200</u>       | <u>200</u>           |
| <u>300</u> | <u>300</u>         | <u>300</u> | <u>300</u>       | <u>300</u>           |
| <u>400</u> | <u>400</u>         | <u>400</u> | <u>400</u>       | <u>400</u>           |
| <u>500</u> | <u>500</u>         | <u>500</u> | <u>500</u>       | <u>500</u>           |



## Velocity or Acceleration change when....

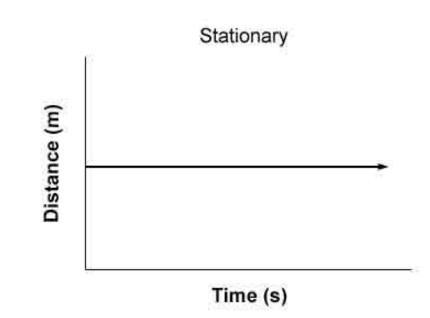
#### (name all possibilities)

- Speed changes
- Direction changes
- •Both speed AND direction change





# What is the acceleration of gravity?


## 9.8 m/s<sup>2</sup>



#### Motion for \$300

# Draw a distance versus time graph for a stationary object

#### (Label X & Y axis)





Motion for \$400

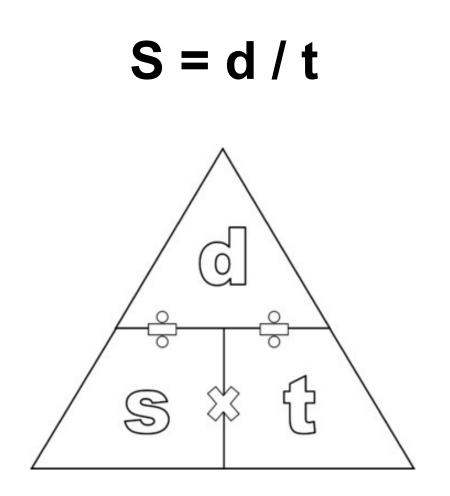
### If equal and opposite forces cause no acceleration they are said to be...

#### Balanced



## Daily Double!! (Worth 1000 points!) How are mass and weight different?

### •Mass is how much matter an object is made of. It cannot change


## •<u>Weight</u> is a force representing the pull of gravity on an objects mass. Weight is variable.



#### Name that force for \$100

#### I'm looking to solve for how fast something is traveling, how long it took or how far it went.

#### What formula do I use?





#### Name that force for \$200

#### I push and push but this force stops the object from going anywhere, how frustrating!

## Friction



#### Name that force for \$300

#### Newton, a famous physicist discovered this force while sitting in an orchard. An apple just fell on his head.

## Gravity



#### **Name that Force for \$400**

## Playing tug of war with my friends you can see this force in action.

## Tension



#### Name that force for \$500

## Our planets orbit around the Sun because of this (these) force(s)

# Centripetal Force &

## Gravity



**Units for \$100** 

#### What does "m/s" mean?

#### AND

#### What is it a unit of?

## Meters per second

## It is the unit for: SPEED





#### What does "m" mean?

#### AND

#### What is it a measure of?

## Meters

## It is a unit of: Distance





#### What does "kg" mean?

#### AND

#### What is it a unit of?

## Kilograms

## It is a unit of:

Mass



Units for \$400

#### What does "m/s<sup>2</sup>" mean?

#### AND

#### What is it a unit of?

# Meters per second squared

## It is a unit of:

Acceleration (velocity)





#### What does "N" mean?

#### AND

#### What is it a unit of?

## Newtons

# It is a unit of: Force (weight too)

#### Newton's Laws for \$100

# The harder you pedal a bicycle the faster it will go is which of Newton's laws?

### Newton's 2nd Law

## Force=mass / acceleration



#### Newton's Laws for \$200

## The main reason a person can jump off the ground is which of Newton's laws?

#### Newton's 3<sup>rd</sup> Law

### **Every action has an equal and opposite reaction**



#### Newton's Laws for \$300

# A hockey puck will slide on the ice for a long time when hit until...

(finish the sentence & tell me the law)

#### Newton's 1<sup>st</sup> Law

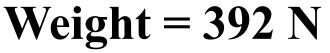
#### An object stays in motion unless acted upon by an outside force



#### **Newton's Laws for \$400**

## Newton's 2<sup>nd</sup> Law of Motion

#### $\mathbf{F} = \mathbf{m} \mathbf{x} \mathbf{a}$

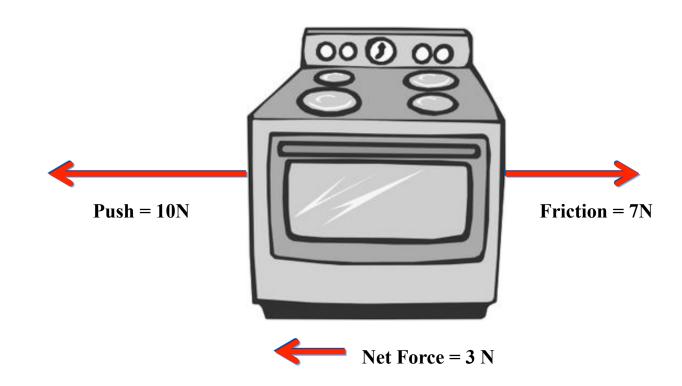



#### Newton's Laws for \$500

# What is the weight of a person who has a mass of 40 kg?

#### Show your work (you can use a calculator)

# F = m x a OR weight = m x a Weight = 40kg x 9.8 m/s<sup>2</sup>






Draw a free body diagram for a person pushing a large oven to the left with a push of 10N and a friction force of 7N.

#### **SOLVE FOR THE NET FORCE**

Label <u>all</u> of the forces acting on the **"box" using arrows of the correct length.** 





# An object is falling toward the Earth at 9.3 m/s<sup>2</sup>.

#### Why is the object NOT falling at 9.8 m/s<sup>2</sup>?

(Hint: What forces resist an object's motion in the opposite direction?)

#### **Air Resistance**

Friction



# What is the acceleration of a 50 kg object pushed with a force of 500 Newtons?

F = m x a F = 500Nm = 50 kg

#### Acceleration = $10 \text{ m/s}^2$

(your units must be correct!)



#### A paratrooper jumps from an airplane and waits 3 seconds before releasing his parachute.

How far did he fall in those 3 seconds?

**Distance** =  $.5gt^2$ g = 9.8 t = 3  $.5(9.8)(3^2)$ 

D = 44.1m



## A 60 kg Gila monster on a merry-go-round is traveling in a circle with a radius of 3 m at a speed of 2m/s What is it's centripetal force?



 $F_{c} = 80N$ 

 $F_c = 60(2^2) / 3$ 

 $F_{c} = m(v^{2}) / r$ 



How many points do you want to risk?

# Final Jeopardy

A cyclist turns a corner with a radius of 50m, a speed of 10m/s and a force of 240N.

What is the mass of the cyclist and his bike?

#### $F_{c} = m(v^{2}) / r$

#### $240N = m(10^2) / 50$

Mass = 120kg

