Friday, January 12, 2018

Your Learning Goal:
After students explore several internet websites, they will explain the difference between motion, reference point, and speed with 80% accuracy.
Table of Contents: Speed it Up* - 17R
Catalyst (17L):
The trash can is to the left of the light post. There is also a fence behind the light post. What is the reference point in that situation and how do you know?

Homework: Speed Problems DUE FRIDAY	Agenda: 1. Catalyst 2. Trackstar 3. Reflection

Table of Contents

Date	Assignment	
$1 / 02 / 18$	How Fast is Fast? *	
$1 / 12 / 18$	Speed it Up *	$16 R+L$
		$17 R+L$

Speed it Up

Catalyst:

The trash can is to the left of the light post. There is also a fence behind the light post. What is the reference point in that situation and how do you know?
The is the reference point in this example. I know that ___ is the reference
 point because...

- Open up a web browser (Firefox, Safari, or Google Chrome)
- Type in trackstar.4teachers.org

> (NO www)

TrackStar: Home
trackstar.4teachers.org

- Find "View Track \#." Type in "394284" and click "Go."

TrackStar is your starting point for online lessons and activities. Simply co ect Web sites, enter them into TrackStar, add annotations for your students, and you have an interactive, online lesson called a Track. Cl ate your own Track or use one of the hundreds of thousands already made by other educators. Search the database by subject, grade, or eme and standard for a quick and easy activity. There is a fun Track already made for each day of the year, too!

Make a Track

Login to Make or Edit a Track

Create an Account and Start Making Tracks
Make a Quiz for your Track
Build a Web Page for your Track
TrackPack Tool (For Advanced TrackStar Users)

Find a Yrack

Browse Themes and Standards
Browse by Subject/Grades

4teachers

Organize and annotate Web sites for use in lessons.

-Click "View in Frames."

Motion Webquest

Track \# 394284
Annotations by: Ms. Tao

Choosing Frames View or Text View

The Magic Triangle

s = speed d = distance $t=$ time

The Speed Equation

Average Speed = total distance

total time

The Speed Steps

Imagine that a car traveled 100 meters in 5 seconds. What is
the average speed of the car? Be sure to show all the steps!

Step 1:	Write down the equation.
Step 2:	Write down what you know.
Step 3:	Plug in your numbers.
Step 4:	Do the math.
Step 5:	Box your answer.

The Speed Steps

Imagine that a car traveled 100 meters in 5 seconds. What is
the average speed of the car? Be sure to show all the steps!

Step 1:	Write down the equation.	speed = $\frac{\text { distance }}{\text { time }}$
Step 2:	Write down what you know.	
Step 3:	Plug in your numbers.	
Step 4:	Do the math.	
Step 5:	Box your answer.	

The Speed Steps

Imagine that a car traveled 100 meters in 5 seconds. What is
the average speed of the car? Be sure to show all the steps!

Step 1:	Write down the equation.	speed $=\frac{\text { distance }}{\text { time }}$
Step 2:	Write down what you know.	distance $=\mathbf{1 0 0} \mathbf{~ m}$ time $=5 \mathbf{s e c}$
Step 3:	Plug in your numbers.	
Step 4:	Do the math.	
Step 5:	Box your answer.	

The Speed Steps

Imagine that a car traveled 100 meters in 5 seconds. What is
the average speed of the car? Be sure to show all the steps!

Step 1:	Write down the equation.	speed = $\frac{\text { distance }}{\text { time }}$
Step 2:	Write down what you know.	distance $=100 \mathrm{~m}$ time $=5 \mathbf{~ s e c}$
Step 3:	Plug in your numbers.	speed $=\frac{100 \mathrm{~m}}{\mathbf{5 ~ s e c}}$
Step 4:	Do the math.	
Step 5:	Box your answer.	

The Speed Steps

Imagine that a car traveled 100 meters in 5 seconds. What is
the average speed of the car? Be sure to show all the steps!

Step 1:	Write down the equation.	speed $=\frac{\text { distance }}{\text { time }}$
Step 2:	Write down what you know.	distance $=\mathbf{1 0 0} \mathbf{~ m}$ time $=5 \mathbf{~ s e c}$
Step 3:	Plug in your numbers.	speed $=\frac{100 \mathbf{m}}{\mathbf{5 ~ s e c}}$
Step 4:	Do the math.	
Step 5:	Box your answer.	

Speed it Up

speed $=$
distance $=$
time $=$

Speed it Up

speed $=$
distance $=$
time $=$

Speed it Up

speed $=\underline{\text { distance }}$ time

Speed it Up

speed $=$ distance time

distance $=$ speed \times time

time $=$

Speed it Up

speed $=$ distance time

distance $=$ speed \times time

time $=$ distance speed

Pre-Write:

The trash can is to the left of the light post. There is also a fence behind the light post.
What is the reference point in that situation and why?

Reflection

In your own words, write the definition and draw a picture for the following words:

- position
- speed

