Your Learning Goal:

To practice reading a graduated cylinder and to understand how to find the volume of an irregular solid object.

Table of Contents: Volume of Irregular Objects - 7R
Catayst: How might we be able to measure the volume of a human? (7L)

Table of Contents

Date	Assignment	Pg \#
8/24/18	Marshmallow Challenge*	1R \& L
8/30/18	Observation vs. Inference *	2R\&L
9/4/18	Rules of the Ruler *	3R \& L
9/11/18	Mass Mania*	4 R \& L
9/13/18	Volume of Regular Objects*	$5 R \& L$
9/17/18	Sort It Out	$6 R+L$
9/20/18	Volume of Irregular Objects	7R \& L
	-	

Catalyst:
How might we be able to measure the volume of a human?

9/20/18

Volume of Irregular Objects

Displacement Method: the amount of water that is pushed out of the way is equal to the volume of the object.

LEAF

Catalyst:

9/20/18
How might we be able to measure the volume of a human?

LEAF

Volume of Irregular Objects

Displacement Method: the amount of water that is pushed out of the way is equal to the volume of the object.

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)

Volume of Irregular Objects

9/20/18

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)

What do you think?

- Assume the
bucket is filled to the very brim
- Every time a drop of water is added to the bucket, how much water leaves the bucket?

What do you think?

- So, the VOLUME of water added to the bucket equals the VOLUME of water that overflows
- The drop of water coming in DISPLACES (kicks out) a drop of water of equal size.
- We can use this information to find the
 volume of irregularly shaped objects.

Volume of an Irregular Object

So, knowing that a graduated cylinder measures the volume of liquids, develop a plan on how you could use the graduated cylinder to measure the volume of a solid.

Directions

- Fill a graduated cylinder with a chosen volume of water. Be sure that is enough to cover the object.
- Record the initial amount of water on your table (A).
- Slowly place the irregular object into the graduated cylinder.
- Measure the new volume of water (B). Record the amount in your table.
- Measurement B - Measurement $A=$ Volume of object (C).
- Remember: $\mathbf{1 ~ c m}{ }^{\mathbf{3}}$ (solid volume units) $=\mathbf{1 ~ m L}$ (liquid volume units)

LEAF 7L

Lead Using your data, explain which object had the greatest volume. The object that has the greatest volume is because \qquad
Evidence: Observable and quantifiable data that a writer uses to support a claim. (When measuring irregular objects with the displacement method, ___ had___ volume compared to
\qquad that had \qquad volume. What is volume and how do different objects compare?

Analysis/Warrant: Certain rules that connect evidence back to claims-how the evidence supports the claim. (What procedures can make the calculation of volume challenging or inaccurate?)

Finisher: Restating your claim in a new way to provide closure for your argument. (How is the calculation of liquid volume done what are some applications and challenges?)

Catalyst:

How might we be able to measure the volume of a human?

LEAF

The object that has greatest volume is because

Volume of Irregular Objects

Displacement Method: the amount of water that is pushed out of the way is equal to the volume of the object.

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)

