Friday, September 21, 2018

Your Learning Goal:

To practice reading a graduated cylinder and to understand how to find the volume of an irregular solid object.

Table of Contents: Volume of Irregular Objects - 7R

<u>Catayst</u>: How might we be able to measure the volume of a human? (7L)

Homework:

Word Wall #1 (Due Monday)

Agenda:

- 1. Catalyst
- 2. Lab
- 3. Clean-up
- 4. LEAF

Table of Contents

	Date	Assignment	Pg #
	8/24/18	Marshmallow Challenge *	1R & L
	8/30/18	Observation vs. Inference *	2R & L
	9/4/18	Rules of the Ruler *	3R & L
	9/11/18	Mass Mania *	4R & L
	9/13/18	Volume of Regular Objects *	5R & L
	9/17/18	Sort It Out	6R + L
	9/20/18	Volume of Irregular Objects	7R & L
ı			

9/20/18

Catalyst:

How might we be able to measure the volume of a human?

LEAF

9/20/18 Volume of Irregular Objects

<u>Displacement</u> Method: the amount of water that is pushed out of the way is equal to the <u>volume</u> of the object.

7L

7R

9/20/18

Catalyst:

How might we be able to measure the volume of a human?

LEAF

9/20/18 Volume of Irregular Objects

<u>Displacement Method</u>: the amount of water that is pushed out of the way is equal to the <u>volume</u> of the object.

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)
	TO.		

7L

7R

Volume of Irregular Objects

9/20/18

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)

What do you think?

- Assume the bucket is filled to the very brim
- Every time a drop of water is added to the bucket, how much water leaves the bucket?

What do you think?

- So, the VOLUME of water added to the bucket equals the VOLUME of water that overflows
- The drop of water coming in DISPLACES (kicks out) a drop of water of equal size.
- We can use this information to find the volume of irregularly shaped objects.

Volume of an Irregular Object

So, knowing that a graduated cylinder measures the volume of liquids, develop a plan on how you could use the graduated cylinder to measure the volume of a solid.

Directions

- Fill a graduated cylinder with a chosen volume of water. Be sure that is enough to cover the object.
- Record the initial amount of water on your table (A).
- Slowly place the irregular object into the graduated cylinder.
- Measure the new volume of water (B). Record the amount in your table.
- Measurement B Measurement A = Volume of object (C).
- Remember: 1 cm³ (solid volume units) = 1 mL (liquid volume units)

LEAF 7L

Lead Using	your data,	. <i>explain</i> w	hich objec	t had the	greatest
volume.	The object	t that has	the greate	est volume	is
	be	cause			

Evidence: Observable and quantifiable data that a writer uses to					
support a claim. (When measuring irregular objects with the					
displacement method, _	had	volume compared to			
that had	volume. What	is volume and how do			
different objects compai	re?				

Analysis/Warrant: Certain rules that connect evidence back to claims—how the evidence supports the claim. (What procedures can make the calculation of volume challenging or inaccurate?)

Finisher: Restating your claim in a new way to provide closure for your argument. (How is the calculation of liquid volume done what are some applications and challenges?)

9/18/18

Catalyst:

How might we be able to measure the volume of a human?

LEAF

The object that has greatest volume is _____ because

9/18/18 Volume of Irregular Objects

<u>Displacement Method</u>: the amount of water that is pushed out of the way is equal to the <u>volume</u> of the object.

Objects	Volume of liquid in graduated cylinder (A)	Volume of liquid + irregular object in graduated cylinder (B)	Volume of irregular object (C)
	10		

6L

6R