Wednesday, September 13, 2018

Your Learning Goal:

After students learn how to read a graduated cylinder, they will use the instrument to correctly measure and mix colored water in the "Rainbow Lab".

<u>Table of Contents</u>: Volume of Regular Objects* - 5R <u>Catalyst</u>: (5L)

When is a time you had to measure the volume of an object? How did you do it?

Homework:

Word Wall

Agenda:

- 1. Catalyst
- 2. Notes: Volume
- 3. Volume Practice

Table of Contents

	Date	Assignment	Pg #
	8/24/18	Marshmallow Challenge *	1R & L
	8/30/18	Observation vs. Inference *	2R & L
	9/4/18	Rules of the Ruler *	3R & L
	9/11/18	Mass Mania *	4R & L
	9/13/18	Volume of Regular Objects *	5R & L
ĺ			

9/13/18

Catalyst:

When is a time you had to measure the volume of an object? How did you do it?

9/13/18 Volume of Regular Objects

5L

5R

Volume of Regular Objects

9/13/18

- •A graduated cylinder is used to measure the volume of liquids.
- •Metric <u>units</u> for liquid <u>volume</u> are <u>milliliters</u> (mL) or solid volume are <u>Centimeters</u>³ (Cm³).

*Meniscus: the bottom part of the liquid that is curved.

*Rules on how to read volume:

1)Keep the graduated cylinder on a flat surface.

2)Read the <u>bottom of the meniscus</u> at <u>eye</u> <u>level</u>.

*The <u>formula</u> to <u>calculate</u> a <u>regular</u> shaped solid object is: volume _{solid} = <u>length</u> x <u>width</u> x <u>height</u>

* 1 <u>cm³</u> = 1<u>mL</u> (solid) (liquid) 5R

Small Graduated Cylinder (25 mL)

Large Graduated Cylinder (50 mL)

Directions: Parts A-C

Part A: Measuring Volume by Formula

- Use your ruler to measure the table bin.
- Make sure your measurements are in cm!

Part B: Measuring Volume by Graduated Cylinder

- Read the directions carefully.
- Make sure you write down your prediction before you start.
- Average = (# of drops to 8 mL) + (# of drops to 9 mL) + (# of drops to 10 mL)

Part C: Exploring Volume

- Use Parts A and B to explain what volume means.
- If you get stuck, use your notes on 5R!

Directions: Part D

Part D: The Color Challenge

It is very important you wash out your pipette and graduated cylinders or you will contaminate your colors!

READ DIRECTIONS ALOUD AS A TEAM and FOLLOW THEM EXACTLY

Directions: Part D

- Read the directions carefully.
- Remember, if you mess up, you cannot start over!
 Once the colors are mixed, they will stay mixed.
- CLEAN the graduated cylinder after you use it!
- When you are done mixing all the colors together, record the colors in your chart.
- Then, measure the amount of liquid in each test tube by pouring it into a CLEAN graduated cylinder.
- Record the volume in your chart.

LEAF

1. Draw, label, and color each test tube.

2. Respond to the prompt

<u>LEAF 5L</u>

When measuring volume of a solid and a liquid, is accurate because)	more
Evidence: Observable and quantifiable data that a writer us	es to

support a claim. (When measuring liquids, _____ drops and ____ average drops were in one mL. When measuring solids was the volume of our class bin.)

Analysis/Warrant: Certain rules that connect evidence back to claims—how the evidence supports the claim. (What procedures make the calculation volume of these objects different?)

Finisher: Restating your claim in a new way to provide closure for your argument. (How is the calculation of liquid volume and solid volume different, how does it effect accuracy?)

9/6/16

Catalyst:

2) 2. Respond to the prompt

5L

9/6/16

Volume of Regular Objects

* <u>Volume</u> is <u>how much space</u> an object takes up.

* A <u>graduated cylinder</u> is used to measure the <u>volume</u> of liquids. The <u>units</u> for the <u>volume</u> of liquids are <u>milliliters</u> (mL) or <u>Liters</u> (L).

* It is <u>numbered</u> from bottom up.

*Meniscus: the bottom part of the liquid that is curved.

*Rules on how to read volume:

1)Keep the <u>graduated cylinder</u> on a flat surface.

2)Read the meniscus at eye level.

3)Read the <u>bottom</u> of the <u>meniscus</u>.

*The <u>formula</u> to <u>calculate</u> a <u>regular</u> shaped object is:

volume $_{solid}$ = $\underline{length} \times \underline{width} \times \underline{height}$

* 1 <u>cm³</u> = 1<u>mL</u> (solid) (liquid)

5R