Wednesday, September 13, 2018

Your Learning Goal:

After students learn how to read a graduated cylinder, they will use the instrument to correctly measure and mix colored water in the "Rainbow Lab".
Table of Contents: Volume of Regular Objects* $-5 R$ Catalyst: (5L)
When is a time you had to measure the volume of an object? How did you do it?

Homework:

Word Wall

Agenda:

1. Catalyst
2. Notes: Volume
3. Volume Practice

Table of Contents

Date	Assignment	Pg \#
8/24/18	Marshmallow Challenge*	1 R \& L
8/30/18	Observation vs. Inference*	
9/4/18	Rules of the Ruler *	
9/11/18	Mass Mania *	
9/13/18	Volume of Regular Objects *	

Catalyst:
When is a time you had to measure the volume of an object? How did you do it?

Volume of Regular Objects

-A graduated cylinder is used to measure the volume of liquids.
-Metric units for liquid volume are milliliters (mL) or solid volume are Centimeters ${ }^{3}\left(\mathrm{Cm}^{3}\right)$.

*Meniscus: the bottom part of the liquid that is curved.
*Rules on how to read volume:
1)Keep the graduated cylinder on a flat surface.
2)Read the bottom of the meniscus at eye level.
*The formula to calculate a regular shaped solid object is: volume ${ }_{\text {solid }}=$ length \times width \times height

* $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
(solid) (liquid)

Small Graduated
Cylinder (25 mL)

Large Graduated
Cylinder (50 mL)

Directions: Parts A-C

Part A: Measuring Volume by Formula

- Use your ruler to measure the table bin.
- Make sure your measurements are in cm!

Part B: Measuring Volume by Graduated Cylinder

- Read the directions carefully.
- Make sure you write down your prediction before you start.
- Average $=(\#$ of drops to 8 mL$)+(\#$ of drops to 9 mL$)+(\#$ of drops to 10 mL$)$

Part C: Exploring Volume

- Use Parts A and B to explain what volume means.
- If you get stuck, use your notes on 5R!

Directions: Part D

Part D: The Color Challenge
It is very important you wash out your pipette and graduated cylinders or you will contaminate your colors!

READ DIRECTIONS ALOUD AS A TEAM and FOLLOW THEM EXACTLY

Directions: Part D

- Read the directions carefully.
- Remember, if you mess up, you cannot start over! Once the colors are mixed, they will stay mixed.
- CLEAN the graduated cylinder after you use it!
- When you are done mixing all the colors together, record the colors in your chart.
- Then, measure the amount of liquid in each test tube by pouring it into a CLEAN graduated cylinder.
- Record the volume in your chart.

LEAF

1. Draw, label, and color each test tube.

2. Respond to the prompt

LEAF 5L

Lead: Where you state the topic of your paragraph.
When measuring volume of a solid and a liquid, is more accurate because...)

Evidence: Observable and quantifiable data that a writer uses to support a claim. (When measuring liquids, \qquad drops and
\qquad average drops were in one mL . When measuring solids
\qquad was the volume of our class bin.)

Analysis/Warrant: Certain rules that connect evidence back to claims-how the evidence supports the claim. (What procedures make the calculation volume of these objects different?)

Finisher: Restating your claim in a new way to provide closure for your argument. (How is the calculation of liquid volume and solid volume different, how does it effect accuracy?)

Catalyst:

9/6/16

Volume of Regular Objects

* Volume is how much space an object takes
up.
* A graduated cylinder is used to measure the volume of liquids. The units for the volume of liquids are milliliters (mL) or Liters (L).
* It is numbered from bottom up.

1
*Meniscus: the bottom part of the liquid that is curved.
*Rules on how to read volume: 1)Keep the graduated cylinder on a flat surface.
2)Read the meniscus at eye level.
3)Read the bottom of the meniscus.
*The formula to calculate a regular shaped object is:
volume ${ }_{\text {solid }}=$ length x width x height

* $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$
(solid) (liquid)

