Thursday, November 9, 2018

Your Learning Goal:

Embarking on a light mini unit. Students will develop a kinesthetic understanding of frequency to apply to the larger concept of light and sound waves

<u>Table of Contents</u>: Heart Beat Frequency – 18L + R <u>Catalyst (18L)</u>:

What are some different kinds of waves and how might they be unique?

Ta	bl	e	of	Cor	<u>1</u>	en	<u>ts</u>

Date 10/8/18 10/8/18 10/11/18 11/9/18

Pg # Assignment Our Expanding Universe 9L+RThe Universe: Beyond the Big Bang 10 L + R Going Subatomic 11 L + R 10/15/18 Changing Phases 12 L+ R 10/16/18 Conservation of Mass 13 L + R 10/19/18 It's Elementary 14 L + R 10/23/18 We're Changing 15 L + R 10/25/18 Atomic Jeopardy 16 L + R11/6/18 Star Bright 17 L + R 18 L + R Heartbeat Frequency

8R

11/9/18

18R

<u>Catalyst:</u> What are some different kinds of waves and how might they be unique?

Heartbeat Frequency

Test situation	Beats per 15 s	Pulse rate (<i>R</i>) * beats/min	Pulse frequency (f) ** beats/s
Sitting			
Lying down			
After standing up and sitting down 10 times			
After 30 s of running in place or jumping jacks			

Calculations:

2		
	$\left(\circ \right)$	

	,			
	Test situation	Beats per 15 s	Pulse rate (<i>R</i>) * beats/min	Pulse frequency (<i>f</i>) ** beats/s
	Sitting			
	Lying down			
	After standing up and sitting down 10 times			
18R	After 30 s of running in place or jumping jacks			

Choose Your Guinea Pig!

Measure pulse rate in these four conditions.

- Sitting quietly.
- Lying down on a clean place on the floor.
- Alternating between standing and sitting in a chair ten times.
- Running in place or doing jumping jacks for 30 seconds.

Calculations

1. If the pulse rate you measured is a certain number of beats in 15 seconds, how could you find the number of beats in 1 minute?

2. How could we convert our pulse rate in beats per minute to a frequency in beats per second?

Calculations

1.

* Pulse *rate* (beats/minute) R = number of beats per 15 seconds × ____

2. ** Pulse frequency (beats/second) $f(\text{beats/s}) = \frac{R(\text{beats/min})}{15}$ (s/min) Or 60

3/12/18

<u>Catalyst:</u> What are some different kinds of waves and how might they be unique?

Heartbeat Frequency

Test situation	Beats per 15 s	Pulse rate (<i>R</i>) * beats/min	Pulse frequency (f) ** beats/s	
Sitting				
Lying down				
After standing up and sitting down 10 times				
After 30 s of running in place or jumping jacks				

11/8/18

18R

<u>Catalyst:</u> What are some different kinds of waves and how might they be unique?

<u>Reflection:</u> Create a definition for frequency, use your lab data AND the picture below as evidence.

18L

Heartbeat Frequency

Test situation	Beats per 15 s	Pulse rate (R) * beats/min	Pulse frequency (f) ** beats/s
Sitting			
Lying down			
After standing up and sitting down 10 times			
After 30 s of running in place or jumping jacks			

Low Frequency

High Frequency